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Abstract

The linear aeroelastic stability of an unbaffled flexible disk rotating in an unbounded fluid is investigated
by modeling the disk–fluid system as a rotating Kirchhoff plate coupled to the irrotational motions of a
compressible inviscid fluid. A perturbed eigenvalue formulation is used to compute systematically the
coupled system eigenvalues. Both a semi-analytical and a numerical method are employed to solve the fluid
boundary value problem. The semi-analytical approach involves a perturbation series solution of the dual
integral equations arising from the fluid boundary value problem. The numerical approach is a boundary
element method based on the Hadamard finite part. Unlike previous works, it is found that a disk with zero
material damping destabilizes immediately beyond its lowest critical speed. Upon the inclusion of small disk
material damping, the flutter speeds become supercritical and increase with decreasing fluid density. The
competing effects of radiation damping into the surrounding fluid and disk material damping control the
onset of flutter at supercritical speed. The results are expected to be relevant for the design of rotating disk
systems in data storage, turbomachinery and manufacturing applications.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Aeroelastic flutter poses serious challenges in the design of high-speed disks rotating in air.
Some practical examples are idling circular saws and CD and DVD drives. In the case of idling
saws, aeroelastic flutter will generate noise and may also hamper the precise engagement of the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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saw with the workpiece. In high-speed CD and DVD drives, aeroelastic flutter can cause
read–write errors and increased noise emissions. This directly limits operation speeds and data
transfer rates in such devices. Aeroelastic flutter may also constrain the future design of
microscale turbomachines where the rotor resembles a thin disk and the operating speeds are
extremely high (millions of rev/min).
A systematic study of aeroelastic flutter of rotating disks began with the experiments of

Stakhiev [1], which demonstrated that disks flutter with large amplitude beyond certain rotation
speeds, and that these vibrations vanish in vacuum. Later Bouchard and Talke [2] showed a
significant reduction in the disk vibration amplitudes at subcritical speeds when the surrounding
air is replaced by helium. These early observations indicate that vibrations of a spinning disk may
be profoundly affected by the surrounding fluid.
More detailed experimental and theoretical investigations of aerodynamically induced

instabilities in rotating disks have been attempted recently. One body of research concerns the
flutter of rotating disks supported on very thin air films [3–6]. This problem is relevant in the
design of floppy and zip disk systems. Because of the low Reynolds number of the fluid film, these
analyses use the incompressible Reynolds’ equation of classical hydrodynamic lubrication theory
to couple the film pressure to the disk vibration. However, such models are inapplicable for a disk
rotating in an unbounded fluid medium or in a fluid-filled enclosure where the gap between the
disk and enclosure wall is large.
D’Angelo and Mote [7] published extensive experimental results on the flutter of a thin steel

disk rotating in open air as well as in an enclosed nitrogen atmosphere at controlled densities.
They measured the flutter speeds, and growths of vibration amplitude with increasing rotation
speed before and after flutter. Their measurements show an initial small increase in vibration
amplitude as the disk passes critical speed, followed by rapid growth in the amplitude after the
flutter instability. The fluttering traveling waves were visualized using Moiŕe photography,
providing direct evidence that the flutter is due to the instability of a single reflected traveling wave
(RTW). For the enclosed disk, they demonstrated that the measured flutter speeds increase with
decreasing fluid density.
Some ad hoc rotating damping models have been proposed to predict aeroelastic flutter in disks

rotating in an unbounded fluid or a large fluid-filled enclosure. Yasuda et al. [8] presented an ad
hoc model to predict the flutter speed of a disk rotating in an unbounded fluid. They proposed
that the aerodynamic load on the disk be expressed as a combination of ‘‘damping’’ and ‘‘lift’’
terms. This representation of the non-conservative aerodynamic load models a distributed
rotating damping. However, they did not provide a physical basis for the above representation of
the aerodynamic load. Hansen et al. [9] suggested an experimental method for predicting flutter of
a disk rotating in a fluid, based on the rotating damping model. They extracted, from
measurements of the frequency response of the spinning disk, the ratio of the‘‘lift’’ to ‘‘damping’’
coefficients. Their method exploited the differential damping of forward and backward traveling
waves (FTW and BTW) reported by Yasuda et al. and also observed much earlier by Campbell
[10] and Tobias and Arnold [11]. However, while a systematic experimental parameter extraction
procedure was provided, their use of generalized rotating damping models is somewhat ad hoc.
No relationship was predicted between the rotating damping pressure and known disk and fluid
properties and geometry. Kim et al. [12] extended the above experimental technique to predict the
flutter speed of an enclosed rotating disk (a hard disk drive).
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A few detailed theoretical models have also been proposed to explain aeroelastic flutter in disks
rotating in an unbounded fluid or a large fluid-filled enclosure. Renshaw et al. [13] attempted the
theoretical modeling of aeroelastic flutter of materially undamped disks using compressible,
potential flow aerodynamics and identified three dimensionless parameters characterizing the
stability of the fluid–disk system. Both enclosed and unenclosed disks were considered. However,
their theoretical predictions only qualitatively matched experiments. Their predicted theoretical
flutter speeds exceeded experimental values by several orders of magnitude. Kim and Renshaw
[14] presented an alternative theoretical model for predicting the aeroelastic flutter of a rotating
disk in an unbounded fluid. They considered the oscillations of a rotating compressible fluid
coupled to a flexible, materially undamped co-rotating disk. They provided a simple model based
on the assumption that the compressibility effects are confined to a thin boundary layer near the
disk periphery. Their predicted flutter speeds exceed experimental values by less than an order of
magnitude. Kang and Raman [15] have recently published a detailed study on different aeroelastic
instability mechanisms in a disk rotating in an enclosed compressible fluid. However, the
acoustic–structure interactions considered in Ref. [15] are very different from those arising in an
unbounded fluid.
This paper re-examines the aeroelastic flutter of an unbaffled flexible disk rotating in an

unbounded fluid. The main contributions of this paper are (a) to compute systematically the
eigenvalues of the coupled disk–fluid system by employing a perturbed eigenvalue formulation
combined with semi-analytical/numerical solution of the fluid boundary value problem (BVP), (b)
to demonstrate that a materially undamped disk destabilizes immediately beyond its lowest
critical speed, (c) to investigate the effect of the disk material damping on the aeroelastic stability
of the rotating disk, and (d) to highlight the crucial competing effects of radiation damping into
the surrounding fluid and disk material damping on the onset of the aeroelastic instability.
Section 2 models the disk–fluid system as a rotating Kirchhoff plate coupled to the irrotational

motions of a compressible inviscid fluid, following Renshaw et al. [13]. Section 3 outlines the
perturbed eigenvalue formulation, which enables a systematic computation of the coupled system
eigenvalues. To solve the fluid governing equations and compute the eigenvalue perturbations,
both a semi-analytical and a numerical approach are employed. The semi-analytical approach
consists of the derivation of a pair of dual integral equations from the fluid BVP, followed by a
perturbation solution of these dual integral equations. Section 4 presents this approach and its
predictions. The numerical approach is a boundary element technique to solve directly the fluid
BVP. Section 5 outlines this approach and its predictions. Section 6 briefly compares the
theoretical predictions of this work with previously published results and provides some
suggestions for improved flutter predictions. Finally, the conclusions are listed in Section 7.
2. Field equations for the disk–fluid system

An annular disk of uniform thickness h, clamped at inner radius a and free at outer radius b,
rotates about its axis in the counter-clockwise direction at a constant angular speed O, as shown in
Fig. 1. The disk is thin, homogeneous, isotropic and linearly elastic, with mass density rd , Young’s
modulus E and Poisson’s ratio n. It is surrounded by an inviscid compressible fluid of ambient
density rf and acoustic velocity c0 ðOboc0Þ. The fluid is unbounded and there are no acoustically
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reflective surfaces in the vicinity of the disk. ðer; ey; ezÞ form the cylindrical basis for a ground-fixed
reference frame, with its origin fixed at the intersection of the mid-plane of the disk and its axis,
and ez oriented along this axis. Our model for this disk–fluid system is based on the aeroelastic
model formulated by Renshaw et al. [13].
An Eulerian description of the transverse displacement wðr; y; tÞ of the mid-plane of the disk,

which is modeled as a Kirchhoff plate with rotation-dependent membrane stresses, results in the
following equation [9,16]:

rdhðw;tt þ 2Ow;ty þ O2w;yyÞ þ Cdðw;t þ Ow;yÞ þDr4w

¼ Qðr; y; tÞ þ
h

r
rsrrw;r

� �
;r
þ

h

r2
syyw;y
� �

;y. ð1Þ

Here r4 is the biharmonic operator, Cd is the velocity-proportional disk material damping
coefficient, D ¼ Eh3=ð12ð1� n2ÞÞ is the bending stiffness of the disk, Qðr; y; tÞ is the distributed
aerodynamic load on the disk and srr and syy are the rotation induced radial and hoop membrane
stresses. The expressions for srr and syy are derived from classical plane-stress linear elasticity (see
for example Ref. [17]).
The fluid motions are assumed to be irrotational, so that the fluid velocity vðr; y; z; tÞ ¼ rf,

where fðr; y; z; tÞ is the fluid velocity potential. Assuming infinitesimal fluid motions, the dynamics
of the fluid are modeled using linear acoustics. fðr; y; z; tÞ is then governed by the free space wave
equation

r2f ¼
1

c20
f;tt, (2)

and the linearized fluid pressure is given by

p ¼ �rff;t. (3)
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The aerodynamic load on the disk, Qðr; y; tÞ equals the fluid pressure differential across its top and
bottom surfaces. Since the disk is thin,

Q ¼ pðz ¼ 0�Þ � pðz ¼ 0þÞ ¼ rf ðf;tðz ¼ 0þÞ � f;tðz ¼ 0�ÞÞ. (4)

f can be written as the sum of components that are symmetric and antisymmetric with respect to
the plane z ¼ 0:

f ¼ fs þ fa; fsðzÞ ¼ fsð�zÞ; faðzÞ ¼ �fað�zÞ.

Because the fluid pressure depends on the difference in f;t across the disk thickness, fs decouples
from the equation of motion of the disk. In studying disk vibrations, therefore, it is sufficient to
set fs ¼ 0 and f ¼ fa [13]. Thus although disk vibrations may produce a non-zero fs in the fluid
field, fs does not in turn effect the vibrations. Hence Eq. (4) for the aerodynamic load becomes

Q ¼ 2rf f;tðz ¼ 0þÞ. (5)

Introduction of the following non-dimensional quantities

r0 ¼
r

b
; z0 ¼

z

b
; a0 ¼

a

b
; t0 ¼

t

b2

ffiffiffiffiffiffiffiffi
D

rdh

s
; O0 ¼

dy
dt0
; w0 ¼

bw

h2
; L ¼

brf

hrd

,

C0d ¼
Cdb2ffiffiffiffiffiffiffiffiffiffiffi
Drdh

p ; f0 ¼
fb2

h2

ffiffiffiffiffiffiffiffi
rdh

D

r
; c ¼

c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ðrdhb2Þ

q ; p0 ¼
pb5

Dh2
, ð6Þ

and combination of Eqs. (1) and (5) lead to the non-dimensional governing equation for
transverse disk vibrations is obtained:

w;tt þ 2Ow;ty þ O2w;yy þ Cdðw;t þ Ow;yÞ þ Lry
O ðwÞ ¼ 2Lf;tðz ¼ 0þÞ, (7)

where the primes have been dropped. Here Lry
O ðwÞ is the linear stiffness operator for the in vacuo

rotating disk, and includes the bending and membrane stiffness operators. For the form of Lry
O ðwÞ,

see for example Ref. [6] or Ref. [13]. Similarly, non-dimensionalization of the wave equation (2)
and dropping of primes lead to

r2f ¼
1

c2
f;tt. (8)

Boundary and far-field conditions must be appended to the field Eqs. (7) and (8). The disk is
clamped at r ¼ a and free at r ¼ 1 (see Ref. [13] for mathematical forms of these boundary
conditions). Further, the fluid normal velocity matches the disk velocity on the disk surface.
Assuming that wðr; y; tÞ ¼ 0 for 0oroa,

f;z ¼ w;t for 0oro1; z ¼ 0. (9)

Because the disk is unbaffled, the fluid velocity on z ¼ 0 off the disk surface is non-zero. However,
provided no shock waves exist, f is at least continuous across z ¼ 0 for r41. In conjunction with
our assumption that f ¼ fa, this requires

f ¼ 0 for r41; z ¼ 0. (10)
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The far-field condition requires that fluid velocities remain finite, that is

f;r; ð1=rÞf;y; f;z finite as r2 þ z2!1. (11)

Note that six non-dimensional parameters characterize the problem. These are the clamping ratio,
a, the Poisson’s ratio, n, the non-dimensional rotation speed, O, the non-dimensional disk material
damping, Cd , the ratio of fluid-to-disk densities, L, and the ratio of acoustic speed in fluid to a
bending wave speed in disk, c.
3. The eigenvalue perturbation method

The eigenvalue problem corresponding to the free vibrations of the system (7) and (8) is derived
by assuming the following separable forms in time and space [13]:

wðr; y; tÞ ¼W ðr; yÞelt; fðr; y; z; tÞ ¼ Fðr; y; zÞelt. (12)

Substitution of the above solution forms into Eq. (7) yields the differential eigenvalue problem for
transverse disk vibration coupled to the surrounding fluid:

l2W þ 2OlW ;y þ O2W ;yy þ CdðlW þ OW ;yÞ þ Lry
O ðW Þ ¼ 2LlFðz ¼ 0Þ. (13)

Because Cd and L are usually small in practical applications, the eigenvalue problem (13) can be
viewed as slightly perturbed from the eigenvalue problem for the undamped, in vacuo rotating
disk. The eigensolutions for the present problem can then be computed by using eigenvalue
perturbation theory [18] as follows. Let lk;W kð Þ be an eigenvalue–eigenfunction pair for the
present problem and let the corresponding F be denoted by Fk. lk, W k and Fk can each be
expanded in a perturbation series with L as the perturbation parameter:

lk ¼ lð0Þk þ Llð1Þk þ OðL2Þ,

W k ¼W
ð0Þ
k þ LW

ð1Þ
k þ OðL2Þ,

Fk ¼ Fð0Þk þ LFð1Þk þ OðL2Þ; ð14Þ

where

ðlð0Þk ;W
ð0Þ
k Þ ¼ ð�iomnb;W mnðrÞe

�inyÞ or ð�iomnf ;W mnðrÞe
�inyÞ (15)

are the well-known BTW and FTW eigensolutions for an undamped, in vacuo rotating disk.
Beyond critical speed, a BTW is referred to as a reflected traveling wave (RTW). Here m and n
denote the numbers of nodal circles and nodal diameters, respectively. Substituting the series
expansions (14) in Eq. (13), assuming Cd�OðLÞ, and equating terms of OðLÞ from both sides
leads to

lð0Þk

2
W
ð1Þ
k þ 2lð1Þk lð0Þk W

ð0Þ
k þ 2O lð1Þk W

ð0Þ
k;y þ lð0Þk W

ð1Þ
k;y

� �
þ O2W

ð1Þ
k;yy

þ
Cd

L
lð0Þk W

ð0Þ
k þ OW

ð0Þ
k;y

� �
þ Lry

O ðW
ð1Þ
k Þ ¼ 2lð0Þk Fð0Þk ðz ¼ 0Þ. ð16Þ
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In order to obtain an expression for lð1Þk from Eq. (16), the following observations are first
recorded:
(1)
 The in vacuo rotating disk eigenfunctions W
ð0Þ
k (expressions (15)) form a basis for the

expansion of W
ð1Þ
k .
(2)
 Both the disk displacement and the slope need to be 2p-periodic.

(3)
 Because the clamped–free disk boundary conditions are independent of the perturbation

parameter L, any W
ðjÞ
k is a comparison function. Self-adjointness of the operator Lry

O ð�Þ

implies, in particular, that hLry
O ðW

ð1Þ
k Þ;W

ð0Þ
l i ¼ hW

ð1Þ
k ;L

ry
O ðW

ð0Þ
l Þi, where h�; �i is the usual

complex inner product [19].

(4)
 Experiments [7,13] demonstrate that aeroelastic flutter in rotating disks is due to the instability

of a RTW. Hence only BTW/RTW eigenvalues are of interest in studying the stability of the
disk–fluid system. Thus henceforth, the index k represents a specific ðm; nÞ BTW/RTW. In
particular, lð0Þk ¼ iomnb. That no FTW eigenvalue can cross into the right half-plane resulting
in flutter will also be clear in Section 4.3.
Now, taking the inner product of Eq. (16) with W
ð0Þ
k , and simplifying the resulting expressions

based on the above observations leads to

lð1Þk ¼
omnbdkk

omnb þ nO
�

Cd

2L
, (17)

where dkk ¼ hF
ð0Þ
k ðz ¼ 0Þ;W ð0Þ

k i represents the effect of the aerodynamic load on lð1Þk . Eq. (17)
provides a convenient way to compute the OðLÞ corrections, lð1Þk , to the in vacuo ðm; nÞ BTW/
RTW eigenvalues of the disk–fluid system. lð1Þk will in general be complex, its imaginary part
signifying added fluid inertia and its real part consisting of competing contributions from

radiation damping and disk material damping. Because lð0Þk is purely imaginary, the kth BTW/
RTW flutters whenever Reðlð1Þk Þ changes sign from negative to positive.
The quantity dkk, and hence lð1Þk , depends on Fð0Þk ðz ¼ 0Þ. Substitution of the separable forms

(12) and perturbation expansions (14) into the wave equation (8) and the boundary and far field
conditions (9)–(11) and retention of OðLÞ terms lead to

r2Fð0Þk ¼ �
o2

mnb

c2
Fð0Þk (18)

and

Fð0Þk;zðz ¼ 0Þ ¼ iomnbW
ð0Þ
k ; 0oro1, (19a)

Fð0Þk ðz ¼ 0Þ ¼ 0; r41, (19b)

Fð0Þk;r;
1

r
Fð0Þk;y; F

ð0Þ
k;z finite as r2 þ z2!1.

Therefore Fð0Þk is the fluid velocity potential generated by the disk vibrating in its kth in vacuo
traveling wave mode. In the following sections, a semi-analytical and a numerical technique are

developed to solve the fluid BVP (18) and (19) and obtain Fð0Þk ðz ¼ 0Þ for each in vacuo mode and
over a range of disk rotation speeds.
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Table 1

Properties of the steel disk (from D’Angelo and Mote), in air

Property Disk–fluid system

Outer diameter (mm) 356

Inner diameter (mm) 106.7

Thickness (mm) 0.775

Young’s modulus (GPa) 207

Poisson’s ratio 0.3

Density of disk (kg=m3 ) 7700

Density of air (kg=m3) 1.2

Speed of sound (m/s) 340

A. Jana, A. Raman / Journal of Sound and Vibration 289 (2006) 612–631 619
Note that both the semi-analytical and numerical methods involve the in vacuo spinning disk
frequencies and radial eigenfunctions. In what follows, these are computed by Galerkin’s method
using the in vacuo stationary disk mode shapes as comparison functions. It was found that using
the first four stationary disk modes with n nodal diameters in the eigenfunction expansion for the
ðm; nÞ in vacuo spinning disk mode ensures convergence of the in vacuo spinning disk frequencies
upto at least four significant figures. The properties of the disk–fluid system chosen for all
calculations in this paper are shown in Table 1.
4. Semi-analytical solution of the fluid boundary value problem

4.1. Dual integral equations

The mixed boundary value problem (18) and (19) for the fluid is first reduced to a pair of dual
integral equations [13]. Assuming circumferential periodicity of the velocity potential,

Fð0Þk ðr; y; zÞ ¼ bFkðr; zÞe
iny, (20)

substitution of Eq. (20) into Eq. (18), setting k ¼ omnb=c and further simplification lead to

bFk;rr þ
1

r
bFk;r þ bFk;zz �

n2

r2
� k2

� �bFk ¼ 0. (21)

The boundary and far-field conditions for bFkðr; zÞ can be derived from Eqs. (19).
Taking the Hankel transform of order n of Eq. (21) leads to [20]

F̄k;zz � ðx
2
� k2ÞF̄k ¼ 0, (22)

where F̄kðx; zÞ ¼
R1
0
bFkðr; zÞJnðxrÞrdr is the Hankel transform of order n of bFkðr; zÞ and

JnðxÞ is the Bessel function of the first kind of order n. The general solution of Eq. (22) is
given by

F̄kðx; zÞ ¼ AðxÞeaðxÞz þ BðxÞe�aðxÞz, (23)
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where aðxÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

p
if xok and aðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2

p
if x4k. Taking the inverse Hankel

transform of Eq. (23) leads to

bFkðr; zÞ ¼

Z k

0

AðxÞeiz
ffiffiffiffiffiffiffiffiffi
k2�x2
p

þ BðxÞe�iz
ffiffiffiffiffiffiffiffiffi
k2�x2
p� �

JnðxrÞxdx

þ

Z 1
k

AðxÞez
ffiffiffiffiffiffiffiffiffi
x2�k2
p

þ BðxÞe�z
ffiffiffiffiffiffiffiffiffi
x2�k2
p� �

JnðxrÞxdx. ð24Þ

To ensure that bFkðr; zÞeiðnyþomnbtÞ appears to a stationary observer located on the positive z-axis in
the far field as a wave traveling in the positive z-direction, AðxÞ ¼ 0 in the first integral. Because
the far-field conditions require that gradients of bFk remain finite far away from the disk, AðxÞ ¼ 0
in the second integral also. Substitution of the above form for bFkðr; zÞ with BðxÞ ¼ iomnbbðxÞ=x
and AðxÞ ¼ 0 into the boundary conditions (19a,b) results in the following pair of dual integral
equations: Z 1

0

aðxÞbðxÞJnðxrÞdx ¼ �W mnðrÞ for 0oro1,Z 1
0

bðxÞJnðxrÞdx ¼ 0 for r41. ð25Þ

4.2. Solution of the dual integral equations in the vicinity of critical speed

The dual integral equations (25) are solved for bðxÞ for each BTW/RTW near its critical speed
by resorting to a series solution. Recall that the critical speed for the ðm; nÞ BTW is the rotation
speed at which omnb vanishes. In a small neighborhood of this critical speed, the wavenumber
k ¼ omnb=c51 can be used as a perturbation parameter in the series solution. This solution
procedure was originally developed by King [21] in his work on the acoustic field generated by an
oscillating, unbaffled, rigid piston. Our approach is an extension of King’s method to enable the
analysis of flexible disks. Renshaw et al. [13] also used a similar approach to solve the current
problem, however details of the solution procedure were omitted. Moreover, our predictions are
very different from Renshaw et al. [13].
Let

bðxÞ ¼ b0ðxÞ þ eb1ðxÞ, (26)

where b0ðxÞ satisfies Z 1
0

xb0ðxÞJnðxrÞdx ¼ �W mnðrÞ for 0oro1,Z 1
0

b0ðxÞJnðxrÞdx ¼ 0 for r41. ð27Þ

Eqs. (27) are a pair of Titchmarsh’s equations with a known closed-form solution [22,23]:

b0ðxÞ ¼ �

ffiffiffiffiffi
2x
p

r Z 1

0

t3=2Jnþ1=2ðxtÞ

Z 1

0

tnþ1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p W mnðttÞdtdt. (28)
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Substitution of Eqs. (26) and (27) into Eq. (25) leads to a pair of dual integral equations in eb1ðxÞ:Z 1
0

aðxÞeb1ðxÞJnðxrÞdx ¼
Z k

0

xb0ðxÞJnðxrÞdx�
Z k

0

aðxÞb0ðxÞJnðxrÞdx

þ

Z 1
k
ðx� aðxÞÞb0ðxÞJnðxrÞdx for 0oro1, ð29aÞ

Z 1
0

eb1ðxÞJnðxrÞdx ¼ 0 for r41. (29b)

Expansion of each of the three integrals on the right-hand side of Eq. (29a) as a series in k and
evaluation of their sum leads toZ 1

0

aðxÞeb1ðxÞJnðxrÞdx ¼ �k2F1ðrÞ for 0oro1,Z 1
0

eb1ðxÞJnðxrÞdx ¼ 0 for r41. ð30Þ

where the derivation of an expression for F1ðrÞ has been outlined in the Appendix. Next, set

eb1ðxÞ ¼ b1ðxÞ þ eb2ðxÞ, (31)

where b1ðxÞ satisfies Z 1
0

xb1ðxÞJnðxrÞdx ¼ �k2F1ðrÞ for 0oro1,Z 1
0

b1ðxÞJnðxrÞdx ¼ 0 for r41. ð32Þ

Eqs. (32) are another pair of Titchmarsh’s equations. Hence b1ðxÞ has the same closed-form
expression as b0ðxÞ (Eq. (28)), with W mnðttÞ replaced by k2F1ðttÞ. It is also observed that
Reðb1ðxÞÞ�Oðk2Þ and Imðb1ðxÞÞ�Oðk2nþ3Þ. Substitution of Eqs. (31) and (32) into Eq. (30) leads to
a pair of dual integral equations for eb2ðxÞ. These steps can be repeated to yield expressions for
higher-order terms of the series solution.
Summation of all orders to obtain the series solution bðxÞ ¼ b0ðxÞ þ b1ðxÞ þ � � �, combination of

Eqs. (20) and (24) to obtain an expression for Fð0Þk ðz ¼ 0Þ and computation of the inner product of
Fð0Þk ðz ¼ 0Þ with W ð0Þ

mn determines dkk. Substitution of dkk into Eq. (17), use of Sonine and
Schafheitlin’s formula [24] to evaluate the improper integral over x and simplification leads finally
to the following expressions for the real and imaginary parts of the OðLÞ eigenvalue correction,
lð1Þk , to the kth in vacuo BTW/RTW frequency in a small neighborhood of its critical speed:

Reðlð1Þk Þ ¼ �
Cd

2L
�

ffiffiffi
p
p

c2k2nþ5g00 n!

22nþ1ðGðnþ 3
2
ÞÞ
2Gðnþ 5

2
Þðomnb þ nOÞ

Z 1

a

rnþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

W mnðrÞdrþ Oðk2nþ7Þ,

(33a)
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Imðlð1Þk Þ ¼ �
4omnb

omnb þ nO

Z 1

a

rnþ1W mnbðrÞ

Z 1

r

1

tn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2=t2

p Z 1

a=t

tnþ1W mnðttÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p dtdtdrþ Oðk2Þ.

(33b)

Here m and n are the nodal circle and diameter numbers of the kth mode, GðxÞ is the Gamma
function and an expression for g00 is provided in Appendix A.

4.3. Flutter predictions using the semi-analytical solution

For materially undamped disks (Cd ¼ 0), the flutter speed Of of the kth BTW/RTW
mode coincides exactly with its critical speed Oc. Note that k ¼ omnb=c vanishes at the critical
speed O ¼ Oc of that specific BTW/RTW mode [11]. omnb and k are positive at subcritical
and negative at supercritical speeds. Since expression (33a) for Reðlð1Þk Þ contains an odd power
of k, it is evident analytically that Reðlð1Þk Þ changes sign from negative to positive at the
critical speed of the kth BTW. Consequently, the disk destabilizes immediately beyond its lowest
critical speed. Note that k never changes sign for a FTW. Thus a FTW cannot undergo aeroelastic
flutter.
This result is in accordance with the theorems of Kelvin, Tait and Chetaev (KTC) on

dissipation-induced destabilization of gyroscopically stabilized systems [25]. For rotating
disks, the total stiffness operator O2ð�Þ;yy þ Lry

O ð�Þ loses positive definiteness at the critical
speed. In vacuum, the disk is immediately gyroscopically stabilized and no instability is
observed at supercritical speeds. According to the KTC theorem, however, the presence
of the slightest positive definite damping destabilizes a gyroscopically stabilized system. When
the disk rotates in air, the radiation damping plays the role of a small positive definite
damping, causing the disk to destabilize immediately beyond its lowest critical speed. In this
sense, the onset of flutter instability in a materially undamped disk occurs at its lowest critical
speed.
Another interesting observation is that at the onset of the above flutter instability, the pair of

complex conjugate eigenvalues for the fluttering BTW crosses into the right half-plane through
the origin and the rate of change of their real part with rotation speed also vanishes (lð1Þk ¼ 0 and
dReðlð1Þk Þ=dO ¼ 0 at O ¼ Of ¼ Oc). This introduces an additional complication to the classical
double-zero eigenvalue instability in damped, axisymmetric, gyroscopic systems near critical
speed [26]. Complicated post-flutter dynamics may arise in the vicinity of such a degenerate
bifurcation.
The imaginary part of lð1Þk is a correction to the in vacuo frequency of the kth mode and signifies

an added fluid inertia effect. In comparison to the in vacuo case, the added fluid inertia effect
lowers the BTW/RTW frequencies at subcritical speeds but raises the BTW/RTW frequencies at
supercritical speeds. The percentage change in the frequency due to the added fluid inertia is very
small, and is speed dependent. The critical speeds, however, remain unaffected by the fluid
loading.
For a materially damped disk with Cd�OðLÞ, Reðlð1Þk Þ changes sign when its radiation damping

component becomes sufficiently positive to overcome the negative material damping component.
This typically occurs at k41, where the above perturbation solution becomes invalid. A
numerical solution of the fluid BVP is needed to predict flutter speeds in this case.
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5. Numerical solution of the fluid BVP

5.1. The boundary element method (BEM)

For the numerical solution of the fluid BVP, a BEM based on the Hadamard finite part is
employed in this paper. This method has been developed in detail in a paper by Beslin and Nicolas
[27]. A very brief outline is provided here.
The pressure at a pointM exterior to a vibrating surface S due to the acoustic field generated by

S is given by [28]

pðMÞ ¼

Z
S

ðpðQÞrG � GrpðQÞÞ � ns dSðQÞ; Q 2 S, (34)

where G ¼ e�ikRðM;QÞ=ð4pRðM;QÞÞ is the free space Green’s function, RðM;QÞ is the distance
between the field point M and the source point Q and ns is the outward normal to S at Q. For a
thin disk, the contribution to the surface integral from the lateral cylindrical surface is negligible.
Equal and opposite contributions from the upper and lower flat disk surfaces nullify the second
term in the surface integral. The remaining term simplifies to

pðMÞ ¼

Z
Sþ

p̄ðQÞ
qG

qzQ
dSðQÞ, (35)

where Sþ denotes the top surface of the disk and p̄ðQÞ ¼ pðQþÞ � pðQ�Þ is the pressure jump
across the vibrating disk.
The above integral relation is singular forM ¼ Q� 2 Sþ. One way to circumvent this singularity

is by considering the Hadamard finite part, where the limit of Eq. (35) as M! Q�, along the
normal to Sþ at Q�, is taken. The linearized Euler equation [28] relates the pressure and fluid
normal velocity at Q�, and the latter equals the disk transverse velocity at Q� due to the velocity
matching boundary condition (19a). The integral over Sþ in these relations is approximated as a
finite sum by dividing Sþ into N surface elements and assuming that the pressure over each
element Sm is constant and equal to its value at the element centroid. This yields a system of N

algebraic equations,

KP̄ ¼ iomnbW, (36)

where P̄ and W are N � 1 vectors of the pressure jump and disk displacement amplitudes,
respectively at the N collocation points (element centroids). K is a fully populated, complex, non-
symmetric matrix. Its off-diagonal elements are given by

Knm ¼
1

4pLc

XNm

j¼1

k2smj

1þ ikRðQmj;QnÞ

ðikRðQmj;QnÞÞ
3
e�ikRðQmj ;QnÞ; m; n ¼ 1; 2; . . . ;N; man, (37)

where Sm is further subdivided into Nm regions Smj having areas smj (see Fig. 2). The diagonal
elements of K are evaluated in the sense of the Hadamard finite part by a semi-analytical
integration [27], and are expressed as

Knn ¼
1

4pLc

XNn

j¼1

anj 1þ
e�ikanj

ikanj

� �
; n ¼ 1; 2; . . . ;N, (38)
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where Sn is further subdivided into Nn regions Snj. For a description of anj and anj, see Fig. 2 and
Ref. [27].
In solving the fluid BVP (18) and (19) for a given kth in vacuo BTW mode, W in Eq. (36) is

known, and is used to compute the unknown P̄. Noting that

Fð0Þk ðQ
þÞ ¼ �P̄ðQÞ=ð2iomnbLÞ, (39)

the inner product dkk can then be computed for this mode through a simple numerical integration:

dkk ¼ hF
ð0Þ
k ðz ¼ 0Þ;W ð0Þ

k i 	 �
1

2iomnbL

XN

n¼1

P̄ðQnÞW
ð0Þ
k ðQnÞsn. (40)

Using these computed dkk values in Eq. (17), the OðLÞ eigenvalue corrections lð1Þk are easily
determined. Note that unlike the semi-analytical method, the above numerical method does not
require the small wavenumber assumption. This method can thus be used for flutter prediction in
disks with small but non-zero material damping.
5.2. Flutter predictions using the numerical method

Flutter predictions using the BEM are performed for the steel disk in D’Angelo and Mote’s
experiment [7]. The disk rotates in air at room temperature and pressure. The properties of this
disk–fluid system are given in Table 1. For the in vacuo undamped rotating disk, the Galerkin
computations indicate that the lowest non-dimensional critical speed is Oc ¼ 5:746 (or 2099 rev/
min) and is associated with the ð0; 3Þ BTW mode. This computed critical speed is very close to the
experimentally measured in vacuo critical speed of 2078 rev/min [7]. The mesh used for the BEM
consists of 3000 surface elements, formed by a grid of 120 radial and 25 concentric circular lines.
For the computation of the off-diagonal entries of K, each surface element is subdivided into
Nm ¼ 625 regions. For the diagonal entries of K, each surface element is subdivided into Nn ¼ 100
regions. A convergence study was performed to investigate the effect of mesh density on the
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eigenvalue correction predictions. This study showed that the above choice of mesh density limits
the errors in the resulting lð1Þk values to less than 1%.
For Cd ¼ 0, the variations with non-dimensional rotation speed O of the real and imaginary

parts of the OðLÞ corrections to several in vacuo BTW/RTW eigenvalues are shown in Fig. 3. The
corresponding insets show magnified views of the same in the speed range from O ¼ 0 to O ¼ 7. It
is seen that the (0,3) BTW/RTW destabilizes first at its (and the disk’s lowest) critical speed,
Of ¼ Oc ¼ Oc3 ¼ 5:746. The plots corroborate all the conclusions for materially undamped disks
inferred from the semi-analytical approach, including the coincidence of flutter speed with critical
speed, and the non-degeneracy of the bifurcation.
Next, the effect of disk material damping on the onset of flutter is investigated. First, Cd 	

2:817� 10�14 is artificially chosen to give Of ¼ Of 3 	 7:504 at L 	 0:034, which is the flutter
speed of the disk found experimentally in D’Angelo and Mote [7]. Using this damping estimate,
the variation of flutter speed in rev/min with the density ratio L is computed for several BTW/
RTW modes (Fig. 4). The results show that the flutter speed is now supercritical at which the
frequency of the fluttering RTW is non-zero, and the flutter instability is a classical Hopf
bifurcation of the equilibrium. Moreover, unlike the materially undamped case, the lowest flutter
speed and the corresponding fluttering mode are now dependent on the density ratio L. For
L40:00115, the ð0; 3Þ BTW/RTW destabilizes first. But for 0:0005oLo0:00115, the ð0; 4Þ BTW/
RTW destabilizes first. This exchange in the initial fluttering mode has been reported in Ref. [7].
Also, the lowest flutter speed Of increases with decreasing L in a manner similar to the
experimental observations in Ref. [7] (see Fig. 4). To summarize, the numerical predictions are in
good correspondence with known experimental results. However, Cd ¼ 2:817� 10�14 is an
unrealistically small value for the material damping coefficient of a real disk.
A more realistic value of Cd ¼ 0:00521 is estimated from the in vacuo experimental data in

Hansen et al. [9]. Note that both Refs. [7,9] employed exactly the same disk in their experiments.
The variation of Of (in rev/min) with L is recomputed for several BTW/RTW modes (Fig. 5).
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Fig. 5 reveals important quantitative differences compared to the experimental observations in
Ref. [7]. The computed flutter speeds are about an order of magnitude higher than experimental
values reported in Ref. [7]. Additionally, the initial fluttering mode is no longer the ð0; 3Þ RTW as
observed experimentally. Instead, a very high nodal diameter RTW is likely to be the initial
fluttering mode.
6. Discussions

6.1. Comparison with previous results

In this paper, essentially two potential flow aerodynamics based models for the disk–fluid
system have been employed for studying its aeroelastic stability. The first model assumes zero disk
material damping and predicts the onset of flutter exactly at the lowest disk critical speed.
Previous experiments [7,13,14] have shown flutter speeds to be supercritical (Of 	 1:1Oc to 1:5Oc

at room ambient density and even higher at lower ambient densities). Thus this model
underpredicts the flutter speeds. For exactly the same model, Renshaw et al. [13] predicted flutter
speeds that exceed experimental flutter speeds by several orders of magnitude. It is likely that this
difference is due to their possible neglect of radiation damping (the second term in Eq. (33a)). The
radiation damping term for a particular BTW/RTW, being Oðk2nþ5Þ, is extremely small near its
critical speed, and may be overlooked in some solution schemes. The flutter mode predicted by
this model is the RTW associated with the lowest critical speed. This flutter mode prediction
matches with experiment at room ambient density [7]. Finally, unlike experiments [7,13,14], this
model is incapable of capturing any dependence of the flutter speed and mode on the ambient
density.
Upon refining the model to include small disk material damping, the predicted flutter speeds

become supercritical and increase with decreasing fluid density as in experiments. With an
artificial choice of the disk material damping, the experimentally observed dependence of the
flutter mode on the ambient density can also be captured by the refined model. In this sense, the
predictions of this refined model are qualitatively closer to experiments compared to the first
model. However with a realistic value of the material damping coefficient Cd , the flutter speeds
predicted by the refined model are higher than experimental flutter speeds and the predicted flutter
mode is also incorrect.
The main reason for the somewhat anomalous predictions of the refined model is that the

ground-fixed radiation damping for a BTW/RTW is extremely small in the vicinity of its critical
speed. Moreover, away from the critical speed, the radiation damping effect increases with
rotation speed much faster for higher nodal diameter RTWs compared to lower nodal diameter
RTWs. This explains the theoretical prediction that higher nodal diameter modes flutter at lower
rotation speeds than the lower nodal diameter modes.
Other reasons may also cause small discrepancies between the theoretical predictions and

currently available experimental data. The experiments of Ref. [7] documenting the variation of
flutter speed with ambient density were performed in an enclosure, albeit a large one. Even so,
acoustic cavity modes may have affected the flutter phenomena. The current theory is for disks
rotating in an unbounded fluid. Indeed, it will be difficult to experimentally vary the ambient
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density in an unbounded setting. Also, the experimental disk material damping data in Ref. [9]
exhibits large variations. More accurate experimental determination of material damping values
will enhance the flutter predictions.
The flutter predictions of Kim and Renshaw [14] are arguably better than those of the refined

model discussed above. Their predicted flutter speeds are less than an order of magnitude higher
than experimental flutter speeds. Moreover, their predicted flutter mode is correct. However, their
model is partially ad hoc and involves an arbitrary choice of a boundary layer weighting function
to closely match theory with experiments. Note that our refined model with a realistic Cd value is
devoid of ad hoc assumptions and entirely predictive.

6.2. Suggestions for improved flutter predictions

The current study clearly highlights the competing effects of the co-rotating disk material
damping and the ground-fixed radiation damping that play a central role in the flutter mechanism.
The ground-fixed radiation damping being extremely small in the vicinity of the critical speed, it is
evident that any other unmodeled sources of ground fixed dissipation are crucial in causing the
flutter instability in materially damped disks. Such additional damping mechanisms could arise
due to incompressible perturbations of the Von Kármán swirling boundary layer controlled by
convective and diffusive mechanisms. Inclusion of these additional damping effects is expected to
provide closer agreement between theory and experiment even for realistic disk material damping
values. However, a fluid model more sophisticated than potential flow aerodynamics is required to
capture all these additional dissipative effects.
The flutter instability may also be influenced by compressible oscillations in the Von Kármán

swirling boundary layer. The work of Kim and Renshaw [14] is an important step towards
studying this effect. Future investigations of this effect may lead to further refinement in the
prediction of the flutter instability.
7. Conclusions

The aeroelastic flutter of an unbaffled disk rotating in an unbounded fluid is analyzed by
modeling the disk–fluid system as a centrifugally tensioned Kirchhoff plate coupled to irrotational
flow of a compressible, inviscid, initially quiescent fluid. Infinitesimal disk deformations and linear
acoustics for the fluid are assumed. Both disks with zero and small material damping are
considered. A perturbed eigenvalue formulation is used to compute systematically the coupled
system eigenvalues. A series solution of the dual integral equations, arising from the mixed BVP
governing the fluid, predicts the onset of flutter in disks with zero material damping. For disks
with small but non-zero material damping, a BEM is used instead.
The main conclusions of this study are:
(1)
 Compressible flow coupling leads to two distinct aerodynamic effects on disk vibration–radia-
tion damping into the surrounding fluid and added fluid inertia effect.
(2)
 In the absence of disk material damping, the radiation damping destabilizes via a flutter
instability the gyroscopically stabilized disk exactly at the critical speed. This onset of flutter
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corresponds to a degenerate form of the double zero eigenvalue bifurcation of a damped
gyroscopic system.
(3)
 With small disk material damping, the flutter speeds are supercritical and increase with
decreasing fluid density. In this case, the instability is a classical Hopf bifurcation.
(4)
 For a very small value of disk material damping, the predicted flutter speeds and modes for
different fluid-to-disk density ratios show good agreement with known experimental results.
With a more realistic choice of the disk material damping, the predicted results remain
qualitatively similar but differ quantatively from experiments.
(5)
 The added fluid inertia effect decreases slightly the frequencies of the BTWs, but increases
slightly the frequencies of the RTWs. The critical speed is unaffected by the fluid loading.
To further improve the prediction of the flutter speeds and modes for materially damped disks, it
is likely that additional dissipative effects need to be included in the model. Such dissipative effects
could arise from fluid viscosity and compressibility in the Von Kármán swirling boundary layer,
and is a subject of ongoing investigation.
Acknowledgements

The authors would like to thank the National Science Foundation (CAREER grant, Award
No. 0134455-CMS) and the Purdue Research Foundation for financial support of this research.
Appendix A. Derivation of an expression for F1ðrÞ

An expression for the function F1ðrÞ in Eq. (30) is derived here. The derivation involves
expanding each of the three integrals on the right-hand side of Eq. (29a) as a series in k. The first
two integrals require the substitution x ¼ k sin y. The third integral requires the substitution

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiex2 þ k2

q
. These substitutions followed by expansion lead toZ k
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where

g0ðtÞ ¼

Z 1

0

tnþ1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p W mnbðttÞdt (A.2)

and

g0j ¼

Z 1

0

tnþ2þ2jg0ðtÞdt for j ¼ 0; 1; 2; . . . . (A.3)

Summing the three series given by Eqs. (A.1), it is seen that the sum is of Oðk2Þ. Setting it equal to
�k2F1ðrÞ, an expression for F1ðrÞ is easily obtained.
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